Mostrando entradas con la etiqueta Iria. Mostrar todas las entradas
Mostrando entradas con la etiqueta Iria. Mostrar todas las entradas

jueves, 13 de marzo de 2025

Las preguntas de Iria: ¿Puedo comprar un láser rosa?

Los láseres están en todas partes: en los lectores de discos, en las cirugías de precisión y hasta en espectáculos de luces impresionantes, aunque ya sabéis que nuestros láseres favoritos son los astronómicos que usamos para apuntar a las estrellas. Pero cuando Iria me preguntó un día si podíamos comprar un láser rosa para no tener que usar siempre nuestro viejo puntero verde, se encontró con una desagradable sorpresa: no, no se puede fabricar un láser rosa. ¿Por qué?

¿Qué es un láser y cómo funciona?

La palabra "laser" es un acrónimo del inglés Light Amplification by Stimulated Emission of Radiation, que significa "amplificación de luz por emisión estimulada de radiación". En términos sencillos, un láser es un haz de luz extremadamente ordenado: si pensamos en la naturaleza ondulatoria de la luz observamos que las ondas de un láser tienen todas la misma frecuencia (o igual longitud de onda) es decir que tienen el mismo color -monocromático-; oscilan en sincronía -coherente- y se propagan en una sola dirección sin dispersarse -colimado-.

Esquema básico de un Láser
1 Medio con inversión de población    2 Alimentación energética del láser
3 Espejo de reflectancia 100%  4 Espejo de reflectancia 99%  5 Emisión de luz láser

Para generar un láser se necesita un material activo (1), como un gas, un cristal o un semiconductor, que pueda ser excitado (2) para emitir luz en una frecuencia específica (5), este efecto está basado en un concepto cuántico llamado inversión de población. En cuanto al color de la luz emitida, los láseres de helio-neón emiten luz roja (632.8 nm), los de argón pueden emitir en azul o verde, y los de diodo se usan en múltiples aplicaciones con colores ajustables.

La clave: frecuencia, fase y polarización

El color de un láser, que no es más que la interpretación de nuestro cerebro a un estímulo externo, está determinado por la frecuencia de la luz que emite. Cada color que percibimos corresponde a una frecuencia (o longitud de onda) específica en el espectro electromagnético visible. El rojo, por ejemplo, tiene longitudes de onda más largas (alrededor de 700 nm), mientras que el azul tiene longitudes de onda más cortas (cercanas a 450 nm). Un láser, al ser monocromático, solo emite en una de estas longitudes de onda. 

Seguramente sea útil recordar que la frecuencia y la longitud de las ondas electromagnéticas están relacionadas por c = ν λ donde c es la velocidad de la luz, ν es la frecuencia y λ la longitud de onda, por lo que podemos hablar indistintamente de una o de la otra.

Además de la frecuencia, la fase y la polarización son propiedades fundamentales de la luz láser. La fase describe en qué punto de su ciclo de oscilación se encuentra una onda en un momento dado. En un láser, todas las ondas están sincronizadas en fase, lo que contribuye a su coherencia y permite interferencias constructivas que refuerzan la intensidad del haz. En la luz de una bombilla tenemos diversas frecuencias y fases, lo que interpretamos como luz blanca; en un led todas las ondas tienen la misma longitud de onda pero no están en fase, lo que interpretamos como luz de un determinado color; solo en el láser las ondas tienen todas igual frecuencia y están sincronizadas en fase.

La polarización, por su parte, se refiere a la orientación de la oscilación del campo eléctrico de la luz. En la luz ordinaria, las ondas vibran en todas direcciones, pero en un láser, la polarización puede controlarse para que las ondas oscilen en un solo plano o en una combinación específica de planos, lo que resulta útil en aplicaciones científicas y tecnológicas avanzadas.

En una onda electromagnética las oscilaciones del campo eléctrico E y del campo magnético B son perpendiculares entre sí y perpendiculares a la dirección de propagación de la onda v. En el caso del láser todas las ondas tienen la misma dirección de propagación (colimado) y las oscilaciones eléctrica y magnética de cada onda están exactamente en los mismos planos (polarizado).

¿Por qué no hay láser rosa?

El problema con el color rosa es que no tiene una longitud de onda correspondiente. En realidad, el rosa no existe en el espectro visible como un color puro, sino que es una combinación de luz roja y azul o violeta. Nuestro cerebro interpreta esta mezcla como "rosa" o "magenta", pero no hay una frecuencia única de luz que corresponda a ese tono. Lo sentimos mucho pero el rosa NO es un color

No hay Rosa aquí :-(

Como los láseres solo pueden emitir en una única frecuencia, no pueden producir el rosa directamente. Para obtener luz rosa, se necesitaría mezclar luz de diferentes frecuencias, algo que ocurre en pantallas o mediante fuentes de luz convencionales, pero no con un solo láser.

Iria y su láser rosa :-)

Así que, aunque no podamos fabricar un láser rosa puro, podemos seguir explorando los límites de la luz y la física para crear combinaciones sorprendentes. Por cierto, os vamos a retar con esta pregunta: Si la luz láser es como os hemos contado, solo deberíamos ser capaces de ver su reflejo, un punto en el que rebote; pero cuando apuntamos el láser astronómico a las estrellas vemos todo el rayo, ¿cómo es esto posible? Habrá premio para los acertantes :-)

Y una última cosita: recordad que los láseres astronómicos solo se deben utilizar para apuntar a las estrellas, nunca a las personas, aviones ni cualquier otro objeto o ser vivo. Los punteros láser astronómicos pueden causar daños irreversibles en la vista. Seamos simplemente razonables. Gracias.


Entradas más visitadas